Ждущий генератор импульсов на микроконтроллере. Генератор на PIC16F84A и AD9850 - Устройства на микроконтроллерах - Схемы устройств на микроконтроллерах. Заказ микроконтроллера с программой


Краткие характеристики:

· Три способа задания длительности импульсов: напряжение (в т. ч. потенциометр); USART; настройки во Flash-памяти.

· Диапазоны генерируемых частот:

– по напряжению – от менее 1 Гц до 10 кГц (три диапазона);

– по USART/Flash – от 0.11 Гц до 7.246 кГц.

· Включение/выключение генерации; управление состоянием покоя.

· Полностью автономен, не нуждается в дополнительных компонентах (кварцевом резонаторе, источниках опорной частоты и др.).

Возможные применения:

· Управляемый или неуправляемый частотозадающий узел, встраиваемый в электронное оборудование (задающий генератор).

· Управление световой индикацией с прерывистым режимом работы.

· Синтезатор звуковых частот.

· Имитатор сигналов для отладки электронного оборудования.

ОБЩЕЕ ОПИСАНИЕ ГЕНЕРАТОРА ИМПУЛЬСОВ

Генератор импульсов на базе микроконтроллера PIC12F675 предназначен для формирования прямоугольных логических импульсов регулируемой длительности.

Имеет гибкую настройку, широкий диапазон выходных частот и управление, которые делают применение этой микросхемы удобным для широкого круга задач. Благодаря своей компактности и автономности позволяет существенно упростить электронные схемы, имеющие узлы генерации частоты, сделать их более точными, наделить их дополнительными функциями, уменьшить площадь печатных плат.

Назначение выводов микросхемы (см. рисунок выше):

Вывод Обозначение Тип Описание
1 Vdd Пит. Питание (диапазон напряжений питания указан ниже).
2 Pulses Выход Генерируемые импульсы.
3 IdleState Вход Задание состояния покоя выхода Pulses (при выключенной генерации):
0 – при выключенной генерации выход Pulses находится в состоянии «0»;
1 – при выключенной генерации выход Pulses находится в состоянии «1»;
соединён с выходом Pulses – при отключении генерации выход Pulses будет оставаться в том состоянии, в котором он был на момент её отключения (после включения питания состояние Pulses будет неопределено).
Смена состояния входа IdleState при выключенной генерации приводит к немедленной смене состояния выхода Pulses (работает как повторитель). При этом время реакции на смену сигнала IdleState – до 100 мкс.
4 Run Вход Разрешение генерации импульсов: 1 – включена, 0 – выключена.
При переходе Run из 0 в 1 выход Pulses немедленно изменяет своё состояние на противоположное (фронт первого импульса).
При переходе Run из 1 в 0 выход Pulses немедленно переходит в состояние покоя (текущий импульс по длительности не завершается).
Время реакции на смену сигнала Run – до 100 мкс, в «медленном режиме» – до 500 мкс.
5 M1 Вход Выбор режима работы (M1:M0):
0:0 – напряжение, быстрый режим.
0:1 – напряжение, средний режим.
1:0 – напряжение, медленный режим.
1:1 – USART/Flash.
Режим работы может изменяться «на ходу», при этом желательно, чтобы ножки M0 и M1 меняли состояние одновременно. Время реакции на смену сигналов M1 и M0 обычно не превышает нескольких мкс.
Если генератор всегда используется в одном и том же режиме, ножки M0 и M1 можно притянуть к Vdd и Vss в соответствии с требуемым режимом.
6 M0 Вход
7 Ur / RX Вход В режиме напряжения – аналоговый вход Ur (задаёт длительность импульсов: Vss – минимальная, Vdd – максимальная).
В режиме USART – цифровой вход RX (линия связи).
В режиме Flash – цифровой вход RX, должен быть притянут к Vdd.
8 Vss Земля «Земля» питания и логики.

Рекомендуется (не является обязательной) установка конденсатора ёмкостью 1–10 мкФ между линиями Vdd и Vss в непосредственной близости от микросхемы, особенно при управлении длительностью импульсов с помощью напряжения (способствует снижению помех на линии питания).

УПРАВЛЕНИЕ ДЛИТЕЛЬНОСТЬЮ ИМПУЛЬСОВ С ПОМОЩЬЮ НАПРЯЖЕНИЯ

В режиме управления длительностью импульсов с помощью напряжения управляющее напряжение подаётся на вход Ur, который в этом режиме работает как вход АЦП, преобразующего величину напряжения в 10-битное значение (0...1023). Значение 0 (Ur=Vss) соответствует минимальной длительности импульсов, значение 1023 (Ur=Vdd) – максимальной.

Для задания длительности импульсов вручную в качестве источника напряжения можно использовать потенциометр (например, 10–20 кОм), как показано на схеме справа. Так как вход Ur практически не потребляет тока, потенциометр обеспечит линейную регулировку длительности импульсов во всём диапазоне. При этом для снижения помех на входе АЦП и повышения стабильности генерируемой частоты рекомендуется заземлить вход Ur через конденсатор 1–10 мкФ, установленный в непосредственной близости от микросхемы.

Коэффициент заполнения импульсов при управлении напряжением всегда равен 50%.

Регулировка с помощью напряжения осуществляется в трёх диапазонах, выбираемых входами M1:M0:

Обозначение «(0...1023)» в таблице – это значение АЦП, полученное после преобразования входного напряжения Ur (Vss...Vdd).

УПРАВЛЕНИЕ ДЛИТЕЛЬНОСТЬЮ ИМПУЛЬСОВ ПО USART

Выбор режима USART/Flash осуществляется подачей логических единиц на оба входа M0 и M1. При этом вход RX является цифровым входом линии связи USART.

Внимание! Уровни напряжения на входе RX логические (Vss и Vdd)! Для подключения к линии RS-232 используйте микросхемы-драйверы (например, MAX232). Подача сигнала линии RS-232 напрямую на вход RX может привести к его выходу из строя!

Связь с контроллером однонаправленная (только на приём). Параметры связи: скорость обмена 4800 бод, 8 бит, 1 стоп-бит, без контроля чётности. Неактивным состоянием линии (отсутствием передачи) считается высокий уровень. Передача символов по линии может осуществляться в любой момент и сама по себе не влияет на генерацию импульсов, в том числе не создаёт дополнительного джиттера («дрожания») фронтов.

При управлении по USART коэффициент заполнения импульсов может меняться произвольно (длительность импульсов и пауз между ними задаются отдельно).

Управление генерацией может осуществляться как с помощью входов Run и IdleState, так и с помощью команд по USART, при этом использование каждого из этих двух входов настраивается индивидуально.

Обращение к генератору импульсов по USART всегда имеет следующий вид:

Все символы внутри скобок – шестнадцатеричные цифры (0...F, буквы A...F строго заглавные!). Для всех двухбайтовых полей первой передаётся старшая цифра, последней – младшая.

Пакет передаётся без пробелов, длина пакета всегда составляет 14 символов (считая скобки). Все символы до "" игнорируются. Пакеты меньшей или большей длины игнорируются (не выполняются). Если во время приёма пакета происходила смена сигналов M1:M0, такой пакет также игнорируется. Выполнение команды, содержащейся в корректном пакете, происходит сразу после приёма символа ">".

Назначение полей пакета:

Поле Описание
KK Команда (значения шестнадцатеричные):
22 – задание параметров генерации;
2D – задание параметров генерации и их запись во Flash-память (настройка режима Flash).
Изменения параметров генерации вступают в силу немедленно (текущий импульс или пауза по длительности не завершаются).
Пакеты с другими командами игнорируются (не выполняются).
СС Конфигурация выводов Run и IdleState. Биты значения: C7 C6 C5 C4 C3 C2 C1 C0.
Бит C0 : 0 = включать генерацию по входу Run; 1 = включать генерацию по значению бита C3.
Бит C1 : 0 = состояние покоя по значению входа IdleState; 1 = состояние покоя по значению бита C4.
Бит C3 : при C0 = 1: 1 – генерация импульсов включена, 0 – генерация импульсов выключена.
Бит C4 : при C1 = 1: значение выхода Pulses в состоянии покоя (при выключенной генерации).
Остальные биты игнорируются.
LLLL Длительность
импульсов.
Определяются формулой: длительность = [значение+1]*69 мкс.
Минимальная длительность (значение = 0): 69 мкс.
Максимальная длительность (значение = 65535): 4.521984 c.
Дискретность задания длительности: 69 мкс.
Значения в формуле – десятичные, при передаче – шестнадцатеричные.
PPPP Длительность пауз
между импульсами.

Примеры конфигурирования параметра CC (значения двоичные, в скобках – шестнадцатеричные):

· 00000000 (00) – генерация включается входом Run, состояние покоя определяется входом IdleState.

· 00000010 (02) – генерация включается входом Run, состояние покоя равно 0.

· 00010010 (12) – генерация включается входом Run, состояние покоя равно 1.

· 00001001 (09) – генерация постоянно включена (состояние покоя значения не имеет).

· 00000001 (01) – генерация постоянно выключена (состояние покоя определяется входом IdleState).

· 00000011 (03) – генерация постоянно выключена (на выходе всегда 0).

· 00010011 (13) – генерация постоянно выключена (на выходе всегда 1).

Длительность периода импульсов определяется формулой TTTT = LLLL+PPPP и лежит в пределах от 138 мкс (около 7246 Гц) до 9.044 с (около 0.11 Гц). Дискретность задания периода 69 мкс (или 138 мкс при коэффициенте заполнения 50%).

При входе в режим USART генерация импульсов начинает осуществляться в соответствии с настройками, хранящимися во Flash-памяти. Поэтому при определённых настройках, отличающихся от заводских, генерация может начаться ещё до подачи соответствующей команды по USART (об установках Flash-памяти см. ниже).

Замечание. После корректной команды записи во Flash-память («2D») новые параметры генерации вступают в силу немедленно (как после команды «22»). Однако за этим следует пауза, в течение которой микросхема производит запись параметров в энергонезависимую память и не реагирует на смену внешних сигналов и новые символы USART (генерация продолжается в заданном режиме). Длительность паузы составляет порядка 23 мс. Однако, так как время записи в энергонезависимую память может отличаться, рекомендуется выдерживать 25–30 мс, прежде чем посылать новые команды по USART.

УПРАВЛЕНИЕ ДЛИТЕЛЬНОСТЬЮ ИМПУЛЬСОВ ЧЕРЕЗ FLASH-ПАМЯТЬ

Выбор режима USART/Flash осуществляется подачей логических единиц на оба входа M0 и M1. При этом для работы в режиме Flash на входе RX также должна быть непрерывная логическая единица.

Настройки, хранимые во Flash-памяти, соответствуют константам CC (конфигурация выводов), LLLL (длительность импульсов) и PPPP (длительность пауз между импульсами) из таблицы выше, значения которых устанавливаются изготовителем либо программируются через режим USART.

Если в константе CC биты C0=1 и C3=1, генерация начнётся сразу при переходе в режим Flash и будет продолжаться всё время нахождения в нём. Если бит C0=0, генерация будет включаться/выключаться входом Run, при этом состояние покоя конфигурируется битами C1 и C4 (примеры смотрите выше).

Режим Flash удобен для создания автономных генераторов постоянной частоты, не требующих настройки «снаружи» (через напряжение или USART) и имеет более высокую стабильность частоты, чем при управлении напряжением (из-за отсутствия влияния помех на входе Ur).

Заводские установки во Flash-памяти по умолчанию:

CC = 00 (управление генерацией сигналами Run и IdleState);

LLLL = десятичное 7245 (соответствует 500 мс);

PPPP = десятичное 7245 (соответствует 500 мс).

Таким образом, по умолчанию микросхема настроена как генератор частоты 1 Гц (коэффициент заполнения 50%) с управлением от входов Run и IdleState.

При поставке мы можем сконфигурировать микросхему по Вашим пожеланиям (подробнее ниже), либо Вы сможете самостоятельно однократно или многократно переконфигурировать её посредством USART (потребуется соответствующее оборудование). Встроенная энергонезависимая память микросхемы обеспечивает не менее 100000 циклов перезаписи (обычно до 1000000).

ГЕНЕРАТОР ПАЧЕК ИМПУЛЬСОВ

Генератор пачек импульсов может быть реализован с помощью двух одинаковых микросхем генератора импульсов, при этом выход Pulses первой микросхемы соединяется с входом Run второй, а вход IdleState первой микросхемы заземляется (см. схему справа).

Включение и выключение генерации пачек импульсов осуществляется с помощью входа Run первой микросхемы, а состояние покоя при выключенной генерации – входом IdleState второй микросхемы.

Входы Ur / RX, M0 и M1 первой микросхемы определяют параметры пачек, а входы Ur / RX, M0 и M1 второй микросхемы – параметры импульсов внутри пачек. При этом, если необходимо, первая и вторая микросхемы могут работать в разных режимах (например, одна от потенциометра, а другая по настройкам Flash-памяти).

Возможное применение генераторов пачек импульсов: прерывистая звуковая сигнализация, прерывистая световая индикация с регулированием яркости и другое.

ПРОЧИЕ ХАРАКТЕРИСТИКИ

Электрические и температурные характеристики микросхемы соответствуют микроконтроллеру PIC12F675, описание которого на русском языке можно найти (формат PDF) .

Основные электрические характеристики генератора импульсов следующие:

· Напряжение питания Vdd: от 2.5 до 5.5 В (в т. ч. 3.3 В, 5 В).

· Диапазон рабочих температур: от –40 до +85 °C.

· Максимальный ток стока/истока на выходе Pulses: 25 мА.

· Потребляемый ток: не более 4 мА (типично 1 мА) плюс ток на выходе Pulses.

Для снижения потребляемого тока подтягивайте неиспользуемые выводы к Vdd.

ЗАКАЗ МИКРОКОНТРОЛЛЕРА С ПРОГРАММОЙ

ВНИМАНИЕ! У нас Вы можете приобрести микроконтроллер PIC12F675 с уже прошитой программой генерации частоты по фиксированной цене – 250 рублей!

При заказе более 5 штук цена снижается; для оптовых партий цена в несколько раз ниже (зависит от размера партии: заполните форму ниже, чтобы узнать цену).

При желании вы также можете самостоятельно приобрести чистый контроллер PIC12F675 в розничной торговой сети и заказать у нас только его прошивку (стоимость по общему тарифу).

При заказе Вы можете указать настройки, зашиваемые во Flash-память (длительности импульсов, режим работы, конфигурацию выводов Run и IdleState) для работы генератора импульсов в режиме Flash. Конфигурирование микросхем по Вашим пожеланиям осуществляется совершенно бесплатно при любом объёме заказа (от 1 штуки).

ОФОРМЛЕНИЕ ЗАКАЗА

Используйте форму ниже для отправки заказа на микроконтроллер с указанной выше прошивкой. Пожалуйста, заполните её как можно более полно.

ССуперпробник может измерять напряжение, частоту, емкость, индуктивность, генерировать различные сигналы и многое другое, и все это на одной микросхеме - PIC16F870, и четырехрязрядном 7-сегментном индикаторе. Вместо индикатора LTC4627 может быть использован любой другой с общими анодами.

Стабилизатор питания выполнен на LM2931 - регуляторе с низким падением напряжения. Это позволяет питать прибор напряжением до 30 вольт с защитой от переполюсовки.

Как видно из схемы, в ней отсутствуют токоограничивающие резисторы в цепях сегментов индикатора. PIC ограничивает ток до 25 мА на линию. Программа написана даким образом, чтобы в каждый момент времени горел только один сегмент. Это исключает эффект того, что некоторые цифры горят ярче, чем другие.

Резисторы R5, R1? R2-R10 на входах микроконтроллера в разных режимах тестирования используются по-разному. Неиспользуемые в данный момент резисторы исключаются из схемы путем перевода выводов ПИКа в высокоомное состояние. R5, к примеру, используется для импульсного пробника. R4 используется для зарядки конденсатора при измерении его емкости.

Устройство собрано в корпусе от старого пробника.

Пробник управляется двумя кнопками. Режимы переключаются нажатием кнопки 1 при нажатой кнопке2...

Prob PULS FrEq Cnt VoLt diod CaP CoiL SIG ntSC 9600 Midi r/c Prn ir38 PWM StOP (Отображается на индикаторе).

Описание режимов работы

Prob Логический пробник
Показывает в первой позиции дисплея "H" при напряжении на входе больше 3,7 вольт), "L" - при напряжении ниже 0.8 вольт) "-" при Z-состоянии. Если обнаружены импульсы (минимум 0.5 мкс),во второй позиции мигает символ "P".
PULS Индикатор импульсов
Отображается частота импульсов (5, 50, 500, 5.0) в трех правых позициях. В первой позиции отображается логический уровень в виде черточки внизу или вверху цифры. Если нажать и держать кнопку 1, то генерируется серия 0.5-мкс импульсов обратной полярности, и загорается средний сегмент. Кнопкйо 2 перебираются 4 частоты. Выбранная частота сохраняется в памяти.
FrEq частотомер В режиме частотомера, нажатие кнопки 1 переключает индикацию на следующие 4 цифры измеренной частоты. К примеру, индикатор показывает "12.57" для частоты 12 576 Гц. Если нажать кнопку 1 то индикатор покажет "2576" - последние 4 цифры. Если отображается точка, то значение в КГц, если точка мигает, то в МГц.
Cnt Счетчик импульсов
В режиме счетчика импульсов дисплей отображает 4 младших разряда. Кнопка 1 переключает на отображение 4-х старших разрядов. Кнопка 2 сбрасывает счетчик.
VoLt Вольтметр Режим вольтметра. В данной прошивке отображается примерное значение - примерно на 2% выше. Делителя напряжения и защиты на входе нет, поэтому не подключайте пробник к напряжениям больше 5 В.
diod Индикатор падения напряжения на диоде или транзисторе
Аналогично режиму вольтметра, но с резистором 10k, подающим ток на щуп пробника. Когда диод или один из переходов транзистора подсоединен к щупу и земляному выводу, отображается падение напряжения.
Cap Измеритель емкость
При нажатии кнопки 1 измеряется и отображается емкость конденсатора. Значения от.001 мкФ до 500 мкФ. Чем больше конденсатор, тем дольше измерение. Измерение конденсатора емкостью 100 мкФ занимает пару секунд.
Coil Измеритель индуктивности
П ри нажатии кнопки 1 измеряется и отображается индуктивность. Значения от 0.1 до 999.9 мГн. Замечание: предполагается, что сопротивление катушки постоянному току не превышает нескольких Ом. Если прибор зависает в этом режиме, прикоснитесь щупом к земляному выводу.
SIG Генератор прямоугольного сигнала
В этом режиме при нажатии кнопки 1 генерируются прямоугольные импульсы частотой 500 Гц и амплитудой 0.5 вольт.
ntSC Видео генератор
Генерируется сигнал NTSC с паттерном из белых точек.
9600 Генератор кода Ascii Каждый раз, когда нажата кнопка 1, генерируются символы A-Z , следующие за cr/lf. Автоматический выбор полярности при подключении к сигнальной линии. Кнопкой 2 переключается скорость: 1200, 2400, 4800, 9600 бод.
Midi Генератор MIDI
Посылает ноту 60 (среднее До) на любом из16 midi-канале. Нажатие кнопки 1 посылает "note on". Отпускание кнопки 1 посылает "note off". Кнопкой 2 переключаются каналы. текущий номер канала сохраняется в памяти.
R/C Генератор импульсов для сервомашинок Генерирует 1- 2 мс импульсы для сервомашинок. Кнопка 1 увеличивает ширину импульса, кнопка 2 - уменьшает. При входе в режим по умолчанию генерируются импульсы 1.5 мс.
Генератор прямоугольных импульсов
Генерирует прямоугольные импульсы частотой 1 - 9999 Гц. Кнопка 1 увеличивает частоту, кнопка 2 - уменьшает.
Prn Генератор псевдослучайных чисел
Генерирует последовательности псевдослучайных чисел с частотой 10 кГц.
ir38 Генераторр ИКкоманд Генерирует 1 мс прямоугольные импульсы с 2.5 мс паузой между ними на частоте 38 кГц. Если подсоединить ИК диод, используется для проверки модулей ИК управления.
PWM ШИМ Генерирует сигнал ШИМ от 3 до 97 % на частоте около 6 кГц. Кнопка 1 увеличивает скважность, кнопка 2 - уменьшает.
StOP Таймер Кнопка 1 запускает/останавливает таймер. Изменение состояния щупа тоже запускает/останавливает таймер. Кнопка 2 сбрасывает таймер. Таймер считает 1/100 секуды от 0 до 99 сек, затем считает 1/10 сек от 100 до 999 сек,затем считает целые секунды от 1000 до 9999 секунд (около 2 ч 46 мин).

В любом режиме при удержании двух кнопок вызывается меню. Переключение режимов вперед и назад осуществляется кнопками 1 и 2 соответственно.

Характеристики генератора:
Частотный диапазон: 11 Гц - 60 кГц
Цифровая регулировка частоты с 3 различными шагами
Форма сигнала: синус, треугольный, прямоугольный, пульс, пакетный, sweep, шум
Выходной диапазон напряжения: ± 15В для синуса и треугольника, 0-5В для других
Синхронизация: выход для импульсного сигнала.

Устройство питается от 12-вольтового трансформатора, который обеспечивает достаточно высокое (более 18 В) постоянное напряжение, необходимое для нормальной работы стабилизаторов 78L15 и 79L15. Питание в ±15 В необходимо для того, чтобы ОУ LF353 на выходе давал полный спектр сигналов при 1кОм нагрузки. При использовании питания ±12 В этот резистор должен быть не менее 3 кОм.

Датчик вращения (поворотный энкодер) который я использовал – ALPS SRBM1L0800 в виде двух переключателей в круге на схеме. Автор, вероятно, использовал другой, так что некоторые изменения в коде программы контроллера были необходимы. Мой датчик имеет две группы контактов: ВЫКЛ и ВКЛ (когда ротор перемещается в соответствующем направлении). Таким образом, изменение прерывания PORTB должны быть созданы, если одна из пар контактов коротится. Это достигается за счет подключения обоих групп контактов на контакты PIC16 (RB4 - RB7), которые проверяются программой на изменение состояния. К счастью, RB4 не был использован в оригинальном дизайне, так что я просто перенаправлен RB3 на RB4. Другая модификация вызвана использованием поворотного энкодера, потому я немного изменил прерывания микропрограммы. Я заставил регулятор, сохранять состояние в течении 100 последовательных измерений вместо 10 в оригинальном дизайне. Заметим, что некоторые ножки PIC используются для перенаправления +5 В для упрощения компоновки печатной платы, поэтому они настроены в качестве входов портов.

Печатная плата предусматривает три резисторных сборки. Одна – R/2R – для ЦАП из Bourns 4310R серии. Сборка ЦАП резисторов может быть построена и на дискретных резисторах по схеме выше. Следует использовать резисторы с допуском до ± 1% или лучше. Светодиодные ограничительные резисторы серии Bourns 4306R. Яркость светодиодов может быть увеличена изменением сопротивления ограничительных резисторов до 220 – 330 Ом.

Генератор собран в 179x154x36 мм пластиковом корпусе с алюминиевыми передней и задней панелями. Уровень выходного сигнала регулируется переменным резистором Alfa 1902F серии. Все другие компоненты устанавливаются на передней и задней панелях (кнопки, разъемы, светодиодные сборки, разъем питания). Платы крепятся к корпусу болтами в 6мм с пластиковыми прокладками.




Генератор производит 9 различных форм сигналов и работает в трех режимах, которые выбираются с помощью кнопки "Выбрать (Select)" и их индикация выводится на трех верхних (по схеме) светодиодах. Датчик вращения корректирует параметры сигнала в соответствии со следующей таблицей:

Сразу после включения генератор переходит в режим 1 и генерирует синус. Тем не менее, начальная частота довольно низкая и по крайней мере одного щелчка регулятора хватит, чтобы увеличить ее.

P.S. От себя добавлю: при повторении устройства с авторской печатной платой прибор отказался заводиться (возможно на печатной плате есть ошибка), а при монтаже на макетной плате – генератор начал работать сразу.

Ниже вы можете скачать исходники asm, прошивку и файлы печатных плат (Eagle)

Скачать архив:
У вас нет доступа к скачиванию файлов с нашего сервера

Данное устройство нажатием одной кнопки генерирует фиксированное число импульсов. Можно задать два различных набора, по умолчанию программа генерирует 1000 и 10000 импульсов.

Описание генератора точных импульсов на микроконтроллере

Схема очень простая. Генератор построен на базе микроконтроллера PIC12F629, который тактируется от внешнего RC генератора. Выходная частота может быть установлена потенциометром P1 в интервале примерно от 2 до170 Гц. Так же частоту можно изменить путем подбора емкости конденсатора С1.

Импульсы генерируются с периодом 200 машинных циклов микроконтроллера, все сигналы имеют одинаковую длину. Выходная частота, таким образом, в 800 раз меньше, чем частота генератора. Перед программированием микроконтроллера необходимо запомнить заводскую калибровочную константу по адресу 3FFh, так как в процессе программирования она может быть утеряна. Хотя на данный момент существует метод по восстановлению калибровочной константы микроконтроллеров PIC12f629 и PIC12f675

Изменяя постоянные величины в программе микроконтроллера можно задать любое количество импульсов вплоть до 65000. Если вам нужно создать различное число импульсов, просто измените константы в программе. Как это сделать видно из рисунка ниже.

Измерительные генераторы, в которых требуемое значение частоты устанавливают с помощью клавиатуры, читателям журнала известны (см., например, статью Пискаева А. "Частотомер-генератор-часы" в "Радио", 2002, № 7, с. 31, 32). Как правило, эти приборы выполнены на микроконтроллере, диапазон генерируемых частот ограничен несколькими мегагерцами, а получение точного значения частоты невозможно. Описываемый в статье генератор тоже содержит микроконтроллер, но использован он только для управления специализированной микросхемой - синтезатором частоты AD9850. Применение этой микросхемы позволило расширить диапазон генерируемых частот от долей герца до 60 МГц, в пределах которого можно получить любое значение частоты с точностью 1 Гц.

Он опрашивает клавиатуру SB1-SB16, выводит информацию на ЖК индикатор HG1, вычисляет значение кода частоты и передает его по последовательному интерфейсу в синтезатор DD2. Звукоизлучатель НА1 служит для подтверждения нажатия кнопок клавиатуры. Микросхема AD9850 (DD2) использована в стандартном включении. На выходе ее ЦАПа включен фильтр Z1. После фильтра сигнал синусоидальной формы подается на гнездо XW2 и на вход компаратора микросхемы DD2 (вывод 16). С выхода последнего сигнал прямоугольной формы поступает на гнездо XW1. В качестве тактового генератора для DDS применен кварцевый генератор G1. Подстроечным резистором R7 регулируют контрастность изображения на индикаторе HG1.
После сброса микроконтроллера производится настройка ЖК индикатора HG1 на режим обмена по шине 4 бита, что необходимо для уменьшения числа линий ввода/вывода, требуемых для записи информации.



Управляют генератором с помощью клавиатуры, состоящей из кнопок SB1-SB16. Поскольку все линии порта В, являющиеся входными, подключены к источнику питания через резисторы, необходимости во внешних резисторах, "подтягивающих" порты RB4 -RB7 к линии питания, нет. Резисторы R3-R6 защищают выходы микроконтроллера от перегрузки при случайном нажатии нескольких кнопок одновременно.
Требуемую частоту устанавливают с клавиатуры. Для этого, нажимая на кнопки с соответствующими цифрами, вводят нужное значение (в герцах) и нажимают кнопку "*". Если частота не превышает максимально допустимой, на индикаторе на короткое время появляется сообщение "ОК" и генератор переходит в рабочий режим, а если превышает, - сообщение "Error". В этом случае нужно нажать кнопку "С" ("Сброс") и заново набрать правильное значение. Точно так же поступают и при ошибке в процессе ввода частоты. Двукратное нажатие этой кнопки переводит прибор в рабочий режим с установленным ранее значением частоты.
В рабочем режиме в крайнем правом знакоместе индикатора мигает символ звездочки. Если текущее значение частоты введено с внешнего блока управления (например, с компьютера), то чтобы вернуться к частоте, отображаемой на индикаторе, достаточно нажать кнопку "*".
Кнопки "U" (Up - вверх) и "D" (Down - вниз) позволяют ступенчато изменять выходную частоту генератора, соответственно увеличивая или уменьшая значение десятичного разряда на единицу. Требуемый десятичный разряд выбирают, перемещая курсор кнопками "L" (Left - влево) и "R" (Right - вправо).
При нажатии кнопки "*" значение частоты и позиция курсора сохраняются в энергонезависимой памяти микроконтроллера, благодаря чему при следующем включении питания прерванный режим работы автоматически восстанавливается. Поскольку вычислительные способности микроконтроллера ограничены, значение выходной частоты выставляется с точностью около 1 Гц, что достаточно для большинства случаев. Чтобы в полной мере реализовать возможности синтезатора, им можно управлять с помощью ПК. Для этого генератор необходимо доработать, дополнив его узлом, схема которого показана на рис. 3. ПК (или иное управляющее устройство) подключают к розетке
XS1. При низком логическом уровне на адресных входах А мультиплексоры микросхемы DD3 подключают входы управления синтезатором к микроконтроллеру DD1, а при высоком - к внешнему устройству. Сигналы управления поступают через контакт "ENABLE" розетки XS1. Резистор R19 обеспечивает низкий логический уровень на адресных входах DD3 при неподключенном устройстве управления.
Генератор собран и испытан на макетной плате. Если не удастся приобрести плату под корпус SSOP для микросхемы DD2, можно использовать для подключения ее выводов к соответствующим контактным площадкам короткие (длиной 10 15 мм) отрезки луженого провода диаметром 0,2 мм. Выводы 1,2,5,10,19, 24, 26, 27, 28 соединяют с общим проводом одним отрезком большей длины.
ЖК индикатор HG1 - 1ТМ1601 (16-символьный однострочный с встроенным контроллером). НА1 - любой пьезоэлектрический излучатель звука с встроенным генератором, рассчитанный на напряжение 5 В. В качестве тактового генератора (G1) можно использовать микросборку кварцевого генератора на частоту до 125 МГц, допустимо применение подобного узла с кварцевой стабилизацией и на дискретных элементах.
Управляющая программа микроконтроллера зависит от частоты тактового генератора.
При программировании микроконтроллера в конфигурационном слове устанавливают следующие значения битов: тип генератора (OSC) - RC. сторожевой таймер (WDT) - выключен, задержка после включения питания (PWRTE) - разрешена.

Выбор редакции